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NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

AFOSR F49620-00-1-0299
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Jeff Borggaard
Center for Optimal Design and Control

Interdisciplinary Center for Applied Mathematics
Virginia Tech

OBJECTIVES

The primary objectives of this research was to develop innovative multi-functional compu-
tational tools for optimal design and control of spatially distributed systems.

ACCOMPLISHMENTS

Overview

We have developed a number of theoretical and computational tools for optimal design and
control of spatially distributed systems. Our main results were focused on complex fluid
systems modeled by the Navier-Stokes equations. We considered turbulent flows, thermal
fluids, temperature dependent material properties and time dependence among other com-
plexities. Sensitivity analysis, the process of quantifying the dependence of parameters on
these flows, was performed for a number of interesting flow problems. We investigated
methods for computing sensitivity variables including a novel application of automatic
differentiation (AD) technology as well as the implementation of a solver for a general
sensitivity equation. This solver includes adaptive mesh refinement for the coupled flow
and sensitivity equations. Our research on advanced computational fluid dynamics (CFD)
simulation and sensitivity analysis continues, with the development of a parallel 3D fi-
nite element based software package to take advantage of modem cluster-based computer
architectures.

In addition to our improved simulation and sensitivity analysis capability, we consid-
ered three main application areas: control, optimization, and novel uses for sensitivity
analysis (including uncertainty quantification). We provide more detailed descriptions of
our research in the sections below.

High Performance CFD Simulation

The two most popular methodologies for simulation of turbulent flows in engineering prob-
lems are large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS). Both
methods reduce computational requirements by computing averaged flow quantities over
space (LES) or time (RANS). However, these approaches present the closure problem, the
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Figure 1: Initial Mesh and Optimal Partition

need to model fluctuations by the averaged quantities. The influence of these, sometimes
empirical, models on the CFD results are important to quantify when interpreting solutions.

We have used both methodologies in our research. In the remainder of this section, we
will outline our LES flow solver, present a novel implementation of time varying boundary
conditions (required for simulating injection-based flow control) and a sensitivity analy-
sis of turbulent flow with respect to the most prevalent LES closure model known as the
Smagorinsky model. This sensitivity analysis was carried out using AD.

Our work with RANS will be discussed in the next section where it is used as a basis to
present our work on general sensitivity equation solvers.

Parallel Implementation of LES Models

LES is a natural tool for studying flow control. It has the ability to model complex flows
in complex domains. It is not possible to use, so-called, direct numerical simulation to
simulate these flows. To make this method amenable to flow control, and flow simulation
in general, a number of issues associated with model closure and boundary conditions need
to be addressed. The latter issue is critical since most flow control is effected with actuation
on the boundary.

We have developed ViTLES (the Virginia Tech Large-Eddy Simulator) to study these issues
and eventually simulate controlled flow. This software is designed to run on System X, the
unique terascale computing facility built at Virginia Tech. ViTLES combines finite element
methods, implicit time-stepping and parallel linear algebra to carry out flow simulations.
Near optimal load balancing is carried out by mesh partitioning (see Figure 1) based on the
Metis graph partitioning library.

New Models in Large-Eddy Simulation

LES is carried out by convolving the Navier-Stokes equations with a spatial filter (usually
the Gaussian averaging filter) and averaging radius J. This averaging operation is usually
denoted with an overbar ýý - g6 * z. The averaged equations leads to a model that estimates
fluid dynamics in spatial regions. Since averaged quantities are smoother, they are easier
to compute. This averaging, however, leads to a number of mathematical complications
that affect the accuracy of the simulations. The most frequently studied is the closure
problem where the term such as zz needs to be modeled using the quantity ý, (note that
z-z $ ý). Although many important models are being developed and tested, most codes
use the Smagorinsky model which approximates the new term

_(•) , (cj)2 IjVl W.

It is important to understand the effect of the filter width (averaging radius) on the flow.
To investigate this, we present the flow past a backward-facing step (depicted in Figure 1)



Figure 2: Horizontal Velocity (top) and its Sensitivity with respect to 3 (bottom)

Figure 3: Vertical Velocity (top) and its Sensitivity with respect to 3 (bottom)

at a Reynolds number of 1000, large enough to lead to a turbulent flow. A time snapshot
of the flow is depicted with the horizontal (Figure 2) and vertical (Figure 3) components of
velocity and the pressure (Figure 4). Along with these figures, we also show the sensitivity
of the flow with respect to 3. This is small in many portions of the domain, indicating that
the closure model may not have much influence in these regions. However, note that the
sensitivity is large in regions with high vorticity and contains smaller structures than the
flow itself. This corresponds to the fact that an extrapolation of the flow to 3 = 0 would
lead to fully resolved turbulent flow (without spatial averaging). For this reason, it is much
more difficult to obtain the sensitivity than the flow in turbulent problems.

Typically, these models allow the filter width (averaging radius) to go to zero near walls to
handle boundary conditions. However, this then requires fine discretizations to accurately
resolve the flow in these regions. This negates the utility of LES as a low-order model. We
are looking at LES models which allow for constant (large) filter widths and while only
capturing large structures in the flow, can do this with a coarse discretization.

The important application is the natural extension of large-eddy simulation to flows
with time-varying boundary conditions (as is the case with flow control based on injec-
tion). There are two approaches used to handle boundary conditions. The first is near wall
resolution. This approach requires fine meshes near the boundary and may be computation-
ally expensive. The second approach is near wall modeling. This approach uses boundary



Figure 4: Pressure (top) and its Sensitivity with respect to 6 (bottom)

layer theory to generate wall functions and avoids fine meshes. However, the usual wall
models do not cover time varying boundary conditions. We have introduced a mathematical
solution based on approximate deconvolution and explicitly accounting for the boundary
commutation error term. Boundary conditions are ultimately determined by solving small
elliptic problems along the boundary of the domain.

Sensitivity Analysis for Complex Flows

Sensitivity of Turbulence Models

A standard model of turbulent flow utilizes the k-c turbulence model for the turbulence
kinetic energy (k) and its dissipation rate (c) to determine the eddy viscosity

k2

P-t = PCM .

This model is used to close the Reynolds-averaged Navier-Stokes equations,

17-u = 0

pu -1U = -Vp + V [(A+I~tt) (,7U+ (vU)T)1 +±f.

The transport equations for k and r suggested by Launder and Spalding are given as

pu .Vk= - + I-I Vkj + ptVu: (VU + (VU)T- 2qk-2 + qk

and

pu . w = V .- + wJ + pCC,,'Vu: (VU + (Vu)) - C2 + q.

The constants C1, C2, C,, o-k, and a-, are given in Table 1.
For accuracy and stability considerations, we perform a change of variables in the above
equations to solve for the logarithms of k and c. This assures positivity and that the vari-
ables have smoother variations. The standard k-C turbulence model is not valid when the



C, C1 C2 Uk U,
0.09 1.44 1.92 1.0 1.3

Table 1: Constants for the k-c model

turbulence Reynolds number is low. This happens near the wall and is treated using wall
functions to model the flow in this region.

The continuous sensitivity equations (CSE) are derived formally by implicit differentiation
of the flow equations with respect to a parameter a. Thus, not only do we treat the variable
u as a function of space, but also as a function of the parameter a. The key point here is
that we adopt a general approach: we consider any (non-geometric) parameter a. Conse-
quently, all the quantities involved (flow variables (u,p), material properties (e.g. p, p/, k),
coefficients (e.g. C,,, CI),...) may simultaneously depend on a. When specific parameters
are selected, certain terms may simply vanish from the general equation. The user must
specify the fluid properties (p, p, etc.) for the flow along with their sensitivities (p', M', etc.)
for the sensitivity equation.

As in our previous work, we are careful to perform mesh adaptation using all solved quan-
tities (u, k, c, and their sensitivities). The ability to tailor software to calculate accurate
sensitivity information is one of the main advantages to our continuous approach.

To demonstrate the flexibility of this formulation, we calculate sensitivities for two example
problems. The first is flow over a backward facing step at a Reynolds number of 47,625
(based on step height L = 1) with constant Dirichlet boundary conditions at the inflow (2L
wide) of u = 1, v = 0, k = 0.005 and E = 0.01. An adapted finite element mesh of 60,000
nodes was used to carry out the approximation.

In Figure 5, we plot the sensitivity of the velocity to all of the modeling coefficients ap-
pearing in Table 1. The sensitivities are scaled by the nominal values of the coefficients.
Observe that the flow along these lines would not be significantly affected by the same
relative increases in both C, and C2 and likewise not affected by increases in both Uk and
a.. This suggests that these pairs of coefficients may not be independent for this flow. In
fact, we've observed similar behavior in many areas of the flow and in the skin friction
sensitivity on the wall downstream of the step.

The second example is the development of a turbulent boundary layer by flow impinging
on a flat plate at a Reynolds number of 2 x 106. In Figure 6, we present the mesh used for
this calculation along with contours of the horizontal velocity component along with the
sensitivity of the (logarithm of the) turbulent kinetic energy with respect to the coefficient
C1. By observing these two contours, we can explain the pattern in the adaptive mesh
refinement.

Applications of Sensitivity Analysis

Sensitivity analysis is an important tool in the control and optimization of fluid systems.
It also has a number of other uses, including uncertainty quantification, estimating nearby
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Figure 6: Flat plate: final mesh and solution

flows, and determining the relative importance of model parameters (as illustrated by the
scaled sensitivities computed above). We will discuss their role in computing gradients
for optimal design and uncertainty quantification below. The use of sensitivity analysis in
answering actuator placement questions is discussed in the next section on Linear Feedback
Control for Distributed Parameter Systems. Other applications were described in annual
reports.

Optimal Design

In this section, we demonstrate our use of sensitivity analysis for optimization of a ther-
mal/fluid system. Convection is often used as a mechanism for cooling. Consider flow in
the domain depicted in Figure 7. In this problem, fluid at a relatively cool ambient tem-
perature is injected at the inflow for the purpose of convecting heat away from the block
on the side of the wall. The fluid flow in this problem can be modeled by the equations of
mixed convection; the Navier-Stokes (with buoyancy term), continuity, and energy equa-
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Figure 7: Mixed Convection Flow Problem

tions along with the appropriate boundary conditions:

pu. Vu = -Vp+V.7-(u)-pg/3(T-To)+f,

V.u = 0,

pcpu.VT = V.(KVT)+q

where the viscous fluid stress is given by

T(U) = /-{Vu + (VU)T

Thus, we consider flows for which the buoyancy term pgO (T - To) is significant. At the
inflow, we assume that the flow velocity is constant, U0j, with an ambient temperature,
To = 0. The walls of the channel are assumed insulated and the block maintains a uniform
temperature of Tb = 1. At the outflow, we specify a zero stress condition.

The flow domain also contains a plate of non-dimensional length 0.25 based on the
channel width or block length (with parabolic ends extending 0.01 on each side of the plate
with a width of 0.02). The thickness of the block is 0.2 and begins one channel width above
the inflow. The plate is used to enhance the heat transfer properties of the system, directing
more of the cooler flow towards the block and creating a thinner thermal boundary layer.
The temperature in this plate can be described by the Laplace equation. While the velocity
of the fluid vanishes on the plate surface, Ia, the temperature in the plate is coupled to the
temperature in the flow since the temperature and heat flux are continuous at the interface.
Thus, the interface condition is

Tfluid = Tplate and

KfluidVTfluid = KplateVTplate on Fa.

For this problem, we assume that the conductivity of the fluid and the plate are the same,
or K(x, y) = K.



Given this system, a natural design problem is to specify the location of the plate,
describing the coordinates of the centroid (x,, yc) and the angle a, to achieve the maximum
cooling benefit from this strategy. To describe this problem precisely, we need to quantify
the effectiveness of a given design. For a given vector of design parameters a = (xC, yC, a)
describing the plate geometry (and hence the flow domain), let u(-; a), v(.; a), p(.; a) and
T(.; a) be the solution to the flow equations. Then a measure of the heat transfered off the
block in this configuration is

Ji(a) = j rVT(x, y; a). -ii drb. (1)

Mathematically, the optimal design problem above can be viewed as finding the maxi-
mum of a function that depends on the design parameters through the solution of the flow
equations. In practice, this solution has to be found using numerical techniques. We use an
adaptive finite element method as discussed below. Once the approximation is defined, a
straight-forward technique for finding the optimal parameter values is to couple the approx-
imate objective function with an optimization algorithm. Since every function evaluation
requires the approximation of a complicated flow field, optimization algorithms that reduce
the number of function evaluations are desirable. Gradient-based algorithms are typically
used since gradients can often be found for a fraction of the cost of performing a flow cal-
culation. This usually involves solving either an adjoint equation or a number of sensitivity
equations. Since we have a relatively small number of design parameters (3 or less) for
this problem, we consider using sensitivity equations. The details of this methodology are
provided below.

Since the amount of time required to evaluate the function dwarves the time required
to estimate the next step, it makes sense to consider algorithms which try to find the best
possible step. This leads us to consider gradient-based optimization methods since, as
we describe below, we can simultaneously find the gradient for a fraction of the cost of
performing a nonlinear flow solve. To minimize the number of iterations required, we
look at higher order methods such as quasi-Newton methods. We avoid calculating the
Hessian, V2J 1 (.), by using a BFGS secant update strategy and initialize our approximate
Hessian with H0 = 71 (ao)I. This gives up some of the accelerated convergence in New-
ton's method for the advantage of avoiding the computational difficulties of computing the
true Hessian at every step. A thorough study weighing the advantages/disadvantages of
calculating the Hessian vs. using a secant update (like BFGS) needs to be performed for
optimization problems of this type.

To allow convergence for a wider range of initial parameter values, we consider using
a trust-region globalization strategy. Thus, at a current design point ak, we choose the next
parameter value which satisfies the following trust-region sub-problem:

max Jl(ak) + Vl7(ak)Tsk + I-skTHkSk,11 sk 11<6k 2 k

then ak+1 = ak + Sk if J1 (ai) is determined to be a satisfactory point. This trust-region
strategy essentially expands the radius of convergence of quasi-Newton methods and has
other properties that make it attractive for solving optimal design problems in this frame-
work.



Most optimization algorithms implement an approximation to the trust-region sub-
problem above, however, for our situation, we can easily afford to solve this subproblem
precisely.

Gradient Calculations: The gradient of the objective functions can be derived by im-
plicit differentiation (recall that we consider our flow field to be a function of our design
parameter a) leading to

a J&(a) f VST(X, y; a). ih dFb.
aai Jrb

where ST= aT "
caai

This sensitivity variable, along with s,, =-u and s = _-•p satisfy the continuous
sensitivity equation which can be derived formally by implicitly differentiating the Navier-
Stokes equations and boundary conditions with respect to the parameter ai:

p(sU-Vu+u-Vsu) = --Vsp+V-.T(s)-pgI0sT+f,
v.s =O0

pC (Su. VT + u VST) V (KVST) +±q

where we have assumed, among other things, that p, -T(.), cp and K are independent of the
design parameter. If this were not the case, we would have additional source terms in the
sensitivity equations above.

In order to complete the description of the partial differential equation, we need to dif-
ferentiate the boundary and interface conditions with respect to a. This is straight-forward
for all of the fluid boundaries except for the plate. In this case, we need to set the total
derivative equal to zero and solve for the sensitivity boundary conditions. For example,
since we have the condition u = 0 on the plate, if we differentiate that condition with
respect to the parameter x,, we find

Su = -a- on ra.

Other conditions are derived similarly.
Consider flow in our optimal design problem for the case where xc = 0.55, y, = 1,

a = 600, Re = 378, Pr = 0.7 and Ri = 1.0. Using our adaptive finite element method,
we compute the flow and corresponding sensitivity with respect to the parameter a.

In Table 2, we plot the value of the function and it's derivative using each expression
given in the problem description. We see that as the mesh is refined, the values of these
functions converge. Both of these objective functions converve to the same value, indicat-
ing that the energy is conserved. Although this convergence indicates that we aren't losing
much information downstream, the change in Jl over the last cycle was less than that of
J 2. Therefore, we decided to use J" to perform our optimization, viewing this as a more
accurate measure. The disadvantage of using this choice of the objective function is that it
requires the derivative of the sensitivity on the block surface to compute the gradient.

This table gives us important information about how to choose stopping criteria for our
optimization algorithm. For instance, since we are going to perform optimization using $1,



we see that we can't expect to find the optimum value of J1 to any tolerance smaller than
1 x 10-4 or expect the gradient to be accurate to any tolerance smaller than 1 X 10-4 either.

A typical mesh is shown in Figure 8. This indicates that mesh adaptation is performed in
the regions where the flow physics vary the strongest-both at the ends of the plate and along
the thermal boundary layer and comers of the block. Not only is this adaptation method
attempting to provide the most accurate flow and sensitivity solution for given computer
resources, but is generating this graded mesh in a rather automatic fashion to minimize
the human interaction at each design iteration. We discuss the details of the optimization
below.

Nodes J, ,2 V J, V J 2
736 0.06274 0.06673 -0.00723 -0.00996

1346 0.06469 0.06410 0.00006 -0.00033
2775 0.06599 0.06598 -0.00790 -0.00770
5772 0.06741 0.06742 -0.01304 -0.01305

13505 0.06837 0.06835 -0.01374 -0.01367
32476 0.06891 0.06898 -0.01442 -0.01443

Table 2: Function and Gradient Values at 60 deg

......

Figure 8: Close-up of a Typical Mesh

As an initial optimization problem, we consider the case where the centroid of the plate
is fixed, but the optimum angle needs to be determined. For this one parameter problem, we
plot a few values of Ji just to get an idea what the objective function looks like. The flow
approximations are determined after 5 adaptive cycles resulting in approximately 30,000
nodes. The resulting function is plotted in Figure 9. Note that while the objective function



is clearly not concave, it does seem concave in the region near the optimum. Furthermore,
the optimum value seems to occur between the value of 15 and 20 degrees.
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Figure 9: Design Objective Function, J1

Based on the validation example and the adaptation history of J1 and VJ 1 for 600
(corresponding to a more difficult flow and sensitivity field), we estimate that we have less
than 1 x 10- accuracy in both the function and the gradient. We can use this information
to select stopping criteria for the optimization algorithm. Starting from 600, we run our
optimization algorithm with an initial trust-region radius of 20'. The iteration history is
provided in Table 3. We see that we run up against the trust-region radius for the first two
iterations (at this time, the Hessian is being updated with information). The final step looks
for a value of Ji at 15.917' and finds a function value which decreases slightly, but outside
our confidence value, and a gradient which is near our confidence value. At this point, we
halted the iteration as the next point was being sought at the halfway point between 15.917
and 20. The result is about a 10 percent increase in performance of the system. The gain
over the flow configuration with no plate is nearly 25 percent (J1 = 0.06116).

Iter. o_ J1 VJl0 60.000 0.0689099 -0.0144212

1 40.000 0.0736174 -0.0112043
2 20.000 0.0757117 -0.0019027
3 15.917 1 0.0755710 -0.0003157

Table 3: One Parameter Iteration History

We repeat the design problem at the same flow conditions as above, however, we now
seek the centroid of the plate as well as the angle. We start from the same location as the
one parameter optimization problem. Since we expected more function evaluations in this



example, we used a coarse mesh for the first six iterations in order to get a good initial guess
more cheaply. Beginning with the seventh iteration, we use five mesh adaptation cycles at
about 30,000 nodes to perform the flow and sensitivity calculations. The result is improved
performance over the case where the centroid is fixed (as expected). The performance
increases about a 13 percent by moving the plate closer to the center of the block. The
iteration history is provided in Table 4.

Iter. x yc 1 IIVi II
0 0.550 1.000 60.00 0.06794 0.0297
1 0.458 1.263 53.68 0.06850 0.0192
2 0.504 1.132 56.84 0.06884 0.0194
3 0.453 1.166 51.33 0.06911 0.0182
4 0.444 1.193 47.20 0.07022 0.0180
5 0.441 1.231 38.90 0.07209 0.0149
6 0.426 1.274 30.71 0.07235 0.0241
7 0.443 1.325 22.97 0.07660 0.0129
8 0.429 1.338 6.46 0.07870 0.0086
9 0.413 1.331 -13.88 0.07842 0.0056
10 0.425 1.313 -3.62 0.07887 0.0043
11 0.433 1.270 -2.80 0.07931 0.0022

Table 4: Three Parameter Iteration History

The temperature contours corresponding to no plate in the problem, the plate with an
optimum angle, and the plate at the three parameter maximum are provided in Figure 10.
Note that the plate has the effect of pinching the boundary layer, thereby causing an increase
in heat flux off the block. One can also see the complex temperature profile behind the
block, although most of the heat is lost over the blunt edge of the plate and the long surface.

Figure 11 displays the temperature flux as a function of the arc length of the block.
Thus, from 0 to 0.2, we find the temperature flux on the leading edge of the block, etc.
The integral of this function provides the objection function Ji. By introducing the plate,
the temperature flux is increased on the long edge of the block (from s = 0.2 to s = 1.2),
especially towards the inflow. The ability to slide the plate toward the center for the block
spreads out this positive temperature flux over the trailing edge of the long edge of the
plate. This results in the increased efficiency.

Uncertainty Quantification
One potentially important application of sensitivity analysis is in developing bounds

for CFD simulations with uncertain parameters. For example, in turbulence models such as
k-E (Launder and Spalding), there are a number of closure coefficients that are determined
by fitting experimental results. For prediction, these same coefficients are often applied
to different flow regimes than those used to construct them. These are inherently uncer-
tain, and this uncertainty should be propagated to the final flow solution. Using sensitivity
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Figure 10: Temperature Contours

analysis, we use the heuristic bound

n u 
a

IAuJ Iz -- yai(X~y; a Aa) ji=1i

where the parameters ai represent the five closure coefficients: Cp,, C1, C2, ok, and u,

with assumed uncertainty in the last significant digit. We demonstrate the promise of these
bounds when we compare our turbulent flow simulation (Re=47,625) over a backward fac-
ing step with published experimental measurements [Kim, 78] in Figure 12. Observe that
the flow in the center of the channel is relatively insensitive to perturbations in the coeffi-
cients where some of the discrepancy in the CFD/experimental comparison near the wall
may be explained by these perturbations. A full comparison would also include uncertainty
bounds on the experimental data as well.

Linear Feedback Control for Distributed Parameter Systems

Chandrasekhar algorithms

We have developed MATLAB code based on 4th order Runge-Kutta methods for integrating
the matrix differential equations backward in time to steady-state. As a test of the effec-
tiveness of this strategy for computing gains, we compared CPU times for gain calculations
with those computed using MATLAB'S built-in Riccati equation solver lqr. In simulations
run with Chris Camphouse, we tested this algorithm on a Dirichlet boundary control prob-
lem for the two dimensional Burgers equation. Here, we consider "flow" in a channel with
control occurring over a submerged obstruction (where control is applied). The control
output is the average value of "velocity" over a patch downstream of the obstruction. A
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summary of the results for different outflow boundary conditions and two values of the
weighting parameter a are reported in Table 5. For the standard LQR problem (a = 0), the
Chandrasekhar equations are extremely competitive, offering nearly an order of magnitude
improvement in the computational time required to compute gains. What makes this more
promising is the fact that we are comparing interpreted m-file code to compiled routines
in MATLAB. A comparison of more optimized Chandrasekhar code would lead to more
savings.

Sensitivity Analysis for Chandrasekhar and Riccati Equations

We have implemented software to solve for quantities on and ,h where It is the function
gain. In the former case, we utilize standard Lyapunov solvers to compute the desired
sensitivity information. In the latter, we integrate a coupled set of Chandrasekhar and
sensitivity equations backward in time to steady-state. For some problems, we can use
either II or h to measure the performance of the controlled system. The sensitivity of h
with respect to a would then provide an efficient means of calculating gradients for an
optimization algorithm.



a Outflow BC Riccati Chandrasekhar
0 Neumann 36.05 4.57

Dirichl~t 32.09 4.49
Robins 35.52 4.41

Periodic 34.35 4.36
0.4 Neumann 37.40 67.62

Dirichl~t 30.52 17.18
Robins 36.29 11.80

Periodic 34.65 13.89

Table 5: CPU Minutes to Compute Functional Gains
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Figure 13: Mesh and Functional Gain Streamlines

Adaptive Mesh Refinement and Conditioning of Riccati Equations Since large Riccati prob-
lems are expensive and/or intractable, it is advantageous to use adaptive mesh refinement
when computing functional gains. The primary advantage is accurate computation of these
gains while keeping the problem size relatively small. As seen in Figure 13, most of the de-
grees of freedom in computing gains that stabilize flow in a driven cavity would be needed
in the region of the cavity. What we have discovered is that consideration of the stabil-
ity/"solvability" of the resulting Riccati problem is also required.

To highlight this issue, we consider the Dirichlet boundary control problem for the heat
equation on the unit interval with control applied on the right hand boundary. For certain
controlled outputs, the functional gains can exhibit a singularity (details of the problem are
described in Reference 6). A few applications of adaptive mesh refinement cluster elements
near the singularity and provide substantial improvement in the computed gains. However,
additional adaptivity cycles lead to a breakdown in the gains which can be explained by
considering the effect of stretched meshes on solutions to the Riccati equation:

A*NIN + INAN - IINBNR 1 BNIN + QN =0. (2)

If we consider the Riccati equation (2), then we would like to guarantee the stability of
solutions ['N due to perturbations in AN, BN, or QN. If, for example, small changes in
AN lead to large changes in [-IN, and ultimately in KN, then we can expect computational
difficulty and misleading solutions. Thus, following the discussion in Datta, we compute
bounds on the condition number of the Riccati equations:

L < Kn < U. (3)



Table 6: Uniform mesh: Bounds on Riccati Condition Number

Refinement Cycle Elements Residual of(2) L U n(A)
0 25 5.34x10-1° 2.732x101 2.740x105  5.23x102

1 50 2.43 x 10 9  2.499 x 106  2.502 x 10 6 2.11 x 103

2 100 1.45 x 10- 8  2.374x107  2.375 X 107 8.48 x 103

3 200 1.46x10- 7  1.952x108  1.953X108  3.40x104

4 400 1.75X10- 6  1.583x109  1.584x109  1.36x105

Table 7: Adapted mesh: Bounds on Riccati Condition Number

Adaptation Cycle Elements Residual of(2) L U n(A)
0 20 2.80x10- 13  1.095x105  1.100x10 5  3.32x10 2

1 36 6.12x10- 13  2.589x108  2.589x108  1.54x10'
2 45 3.48x10- 9  1.286x10 12  1.286x10 12  9.47x10 6

3 48 1.16x10- 1  5.261x10 15 5.261x1015  9.52x10 7

4 53 2.17x10- 2  1.884x10 16  1.884x1016  4.05x10 9

5 45 7.24x100  2.776x10 19  2.776x1019  1.19x10 9

6 41 2.56x10 2  3.469x10 16  3.469x10 16 2.48x10' 0

7 46 5.24x10- 2  3.741x1015 3.741x1015 2.38x10 10

This is analogous to the stability problems caused by large condition numbers in the solu-
tion of linear systems (cf. Golub and Van Loan). In other words, Kri gives us a relationship
between relative changes in the components of (2) and relative changes in the Riccati solu-
tion,

IIAnll IIAQII + IIAAI + ±IA(BR 1BT) 1
111111 1Q11-- - ILA IIBR-1BwII J

We present bounds on the condition number using either uniform meshes (Table 6) or
adapted meshes (Table 7). We see that the bounds on errors in the condition number grow as
the mesh is refined in both cases. However, when the meshes are heavily stretched through
adaptivity, the solution breaks down after four mesh refinement cycles. Therefore, research
into approximation schemes leading to stable Riccati problems is needed for problems with
fine scale structures.

Optimal Actuator Placement

We have constructed a number of design objectives to be used for actuator placement.
These extend the usual LQR-type control cost used in many optimal placement strategies by
considering spatially distributed disturbance functions. We outline these design objectives
using a simple one-dimensional heat equation model.

We consider the problem of placing a heat source/sink for control of temperature z in a
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Figure 14: Distributed Disturbances and Design Objective

rod modeled by the heat equation,

zt(t, x) = zxx(t, x) + b(x; a)u(t) with z(t, 0) = 0 = z(t, 1), t > 0

and initial conditions z(0, x) = zo(x). Note that the location of the source is parameter-
ized by a.. We consider the introduction of a distributed disturbance function of the form
d(x)w(t). The standard optimal LQR-cost design problem is to find the value of a,, that
minimizes the LQR cost over a set of possible initial data 2. Minimize

max_ Ji(ui, zo) = max(1-(a)zo, zo)
zoEZ zoEZ

over all admissible locations a (f1 is the solution to the algebraic Riccati equation, ARE).
As reported in earlier work, this measure works well for a number of problems. However,
it doesn't extend to the case of multiple actuators (actuator locations are chosen to be co-
located). As a result, we are looking at control performance measures that incorporate
robustness. Thus, we consider spatially distributed disturbance functions while setting up
the minimization problem. To do this, we consider the a-parameterized closed loop transfer
functions

Tz,(s; a) = C (Is - A - B(ca)B*(a)II) D (4)

where 11 is the solution to either the ARE as above or the III ARE with a given value of
the RMS bound -y.

The H'-norm of the above transfer function with either value of fl are similar. In
Figures 14, we plot a collection of disturbance functions along with the associated design
objective functions (H1)-norm of the transfer function Tz, using H from the ARE). Note
that the optimal actuator position would be in the center of the rod without any distur-
bances. The effect of the disturbances is to shift the minima closer to the region where the
disturbance has "more support." We continue to seek appropriate quantification of the best
actuator location.

LQR for Index-2 DAEs

Early studies of linear quadratic regulator (LQR) control for differential algebraic equations
(DAEs) typically consider singular perturbations and index 1 problems. The literature on



index 2 systems is much more limited. Our research considered a special form of the
singular, linear time-invariant index 2 system

E(t) = Ax(t) + Bu(t), x [(t) [ t) ] C R=r+s, u(t) E IRm ,  (5)Ek~~~t) (t)t +Iu~)

for t > 0. We assume that the matrices above have the following structure:

E = Eil 0, EllE RT r with rank(Ell) =r,

A = A1 A A1 20 All c pjr A21 E IRSX" and A 12 =A

[ B1 I ~ ~ ,IR×•
B = B2 IB 1 BE IRT rn and B2 E Rsxrn.

For compatibility we require that the columns of B2 lie in the range of A21 (in some cases,
B2 is zero). We also assume, for convenience, that A21 has full row rank (otherwise a
change of variables can be used to remove redundancies). For many practical problems E
and A are symmetric matrices.

For the well-posedness of system (5), we quote the theory of linear autonomous DAEs.
Namely, we will assume that the initial conditions for x, are consistent, A21x1 (0) = 0 (or
A 21X1 (0) + B2u(O) = 0), that the control is differentiable, and that sE - A is non-singular
for a real value of s. This would hold if, e.g. A is invertible.

Systems of this form arise in a number of important problems including discretizations
of a class of saddle point problems. An important example for this research is a standard
mixed formulation for the Stokes equations. Let the velocity v E V and pressure p E P be
approximated using bases f j J=l and {'}=. The weak form (leading to finite element
equations) of the problem is: Find v"(., t) E V and pn (., t) E P such that for t > 0

m
( k) -(jtVvn, V~ + (pfl, V. ¢ + for i = 1,..., (6)

j=l

0 = (V-v', 0) for i=l,...,s. (7)

The boundary integral terms all vanish due to the choice of boundary conditions above.
This discretization produces a system of the form (5) with (Ell)ij = (¢j, 0i), (B1)ij =

(bj, 0j),

(All)i - -- i(Voj, Voi), (A12)ij = (0j, V. ¢0), and (A21 )ij = (V.- ¢j

The coefficients of v correspond to x, and the coefficients of p correspond to X2.

Note that this control problem would result if one were to discretize the linearized
Navier-Stokes equations (known as the Oseen equations). The difference would appear in
the All block, which would have an additional term (-Oj VU - U . V~j, 0j), where U is
the nominal flow that one linearizes about. If one linearizes about zero, the above Stokes
equations are obtained. Thus, we may consider large values of p, which would otherwise
violate the Stokes hypothesis.



We consider the feedback control for finite dimensional systems in the form (5). Thus,

we seek the control u(t) in the form

u(t) = -Kxi(t) (8)

that minimizes the cost J(u, xinit) = fo I {(Cxl, Cxl)]Ry- + (u, Ru)iRm } dt subject to the
dynamics given in (5).

In the next section we propose four algorithms for solving the feedback control prob-
lem. Two of these algorithms use index reduction and are related to well-known meth-
ods for simulating Navier-Stokes equations: pseudo-compressibility and a penalty method.
The other two are based on generating conforming discretizations (where the constraint
equation is automatically satisfied). One of these methods handles the problem as a post-
processing step, while the final method requires special discretization and is not always
practicable.

Algorithm A. 1: The Pseudo-Compressibility Algorithm

The first is to perturb the problem to a system of differential equations by adding a block
to the left hand side matrix

E Ell 0 (9)

where M is an easily invertible matrix. For the solution to the Stokes equations, this is
referred to as the "pseudo-compressibility" method and was first proposed by Chorin for
incompressible Navier-Stokes simulations. (This amounts to a singular perturbation of
Stokes flow.) Thus, the control is designed based on the system

_1 = - 1A21 EllOA21 ]X] l _MB2 u. (10)

Since we are only looking at the control in terms of xl, we find K as the restriction of the
gain computed above to xl.

Algorithm A.2: The Penalty MethodAlgorithm

The second algorithm is based on imposing the constraint through a penalty method

A= [All A12 1I
[A 21 EM I (11)

Again, the matrix M is selected as an easily invertible matrix. This is a computational
mechanism for solving Stokes equations, known as the penalty method. Upon inversion of
cM, we can reformulate problem (5) as a differential equation for xi.

il = E-1 (All 1 - ATIM-1A 2 1 ) x + E-I 1 (B - AT1M-1B 2)u. (12)

The control for the above equation is naturally formulated in terms of xl.



Algorithm 2.3: The Projection Algorithm

The third algorithm explicitly represents the problem as a differential equation on a
manifold. This is only practically implementable if B2 = 0, so we consider this case first,
then state the results for the general case. If V2 is a collection of s orthonormal column
vectors and span(V2) is the null space of A 21, then let x, = V2c, and upon premultiplication
by V2, the first equation becomes

VTE1,V2ý = V2TA11V2c + V2 A12x2 + V2TBlu (13)

where the term V2TA 12x 2 vanishes since A21 V2 = 0. Thus, only a control problem for the
new variable c remains,

= (V 2 TE 1 IV 2 y
1 (V 2T A,,V 2 ) c + (V 2TE 1 ,V 2 ) V2TBiu.

This is a pure linear algebra approach leading to the smallest possible control problem in
r - s variables . Note that we must place additional restrictions on V2 to ensure that the
control generated for c is suitable for the original problem.

Finally, if B 2 $ 0, then the constraint equation requires B2 to be in the range of A21.
Thus, we will represent B2 = A210 for some q C 111"'. Using the specific form of
the control (8), we have A 21x1 - A21rKx1 = 0. Thus, if we could find a basis V2 for
the matrix A21 - A 21 i0K, then we could carry out the discussion at the beginning of this
section. However, we will not generally know K a priori, limiting the applicability of this
approach.

We consider controlling Stokes equations in a unit box with a rotational body force
b = (.5 - y, x - .5) and a viscous fluid with y = 1000. Taylor hood elements are used
to generate the discretized problems with N elements per side (leading to r = 2(2N - 1)2

and s = (N + 1)2). We use the results from Algorithm A.3 as the true solution and tabulate
the errors using Algorithm A. 1 and Algorithm A.2 in Table 8.

Again, we see the advantage of the penalty method over the pseudo-compressibility
method. However, in both cases, the convergence is much slower in ( than the previous
example. The L 2 -norm of the error also converges slowly as the mesh is refined. Note that
the penalty method approach ultimately broke down for E =le-10 and N = 12 or 14. This
suggests that the stability of these &approximate approaches need to be considered as we
take c very small. This is addressed in the section below. We note that the accuracy of these
c-approximate algorithms is a function of the viscosity parameter y. When Y = 0.1, we
achieve similar tables, but the errors are approximately four orders of magnitude larger.

As seen above, in comparing these approaches, we must not only compare the accuracy
of the approximate solutions, but also the conditioning (sensitivity to first order perturba-
tions) of the resulting algebraic Riccati equations (ARE)

AX+AT X+Q-XBR-lBT X=0 where Q=CTC.

The condition number, denoted by K, is an indication of the sensitivity of the solution to
perturbations in the data.



Algorithm A. 1, Pseudo-Compressibility Algorithm
N c =le-4 c =le-6 c =le-8 c =le-10
4 2.71 5244e-06 2.694859e-06 1 .726598e-06 5.827051 e-07
6 2.70 1433e-06 2.679045e-06 1 .665645e-06 5.259460e-07
8 2.701 604e-06 2.678580e-06 1.650391 e-06 5.088347e-07

10 2.707469e-06 2.6841 63e-06 1.648 144e-06 4.953090e-07
12 2.715604e-06 2.692135e-06 1.650872e-06 4.816763e-07
14 2.723676e-06 2.700094e-06 1.654640e-06 4.675749e-07

Algorithm A.2, Penalty Method Algorithm
4 5.729313e-07 4.740617e-07 4.745786e-07 4 .745 611 e-07
6 4.941872e-07 3.912325e-07 3.919399e-07 3.920233e-07
8 4.768200e-07 3 .735520e-07 3.741 555e-07 3 .692929e-07

10 4.685493e-07 3 .580090e-07 3 .582774e-07 4.1551 75e-07
12 4.632434e-07 3.421 274e-07 3.42461 7e-07 ill-posed
14 4.593974e-07 3 .272885e-07 3 .282849e-07 ill-posed

Table 8: Stokes Equation: Errors in Functional Gains

We compute bounds on the condition number as suggested by Kenney and Hewer. They
extended the ideas of Byers, and obtained a sharper bound for the approximate Byers con-
dition number. They also extended the norms to norms other than the Frobenius norm. If
KL and r-B respectively denote the lower and upper bounds defined by Kenney and Hewer,
then

KL<K<K

where the spectral norm is used. The numerical study of condition number growth is pro-
vided in Table 9.

Stokes Equation Example
Alg. A. 1 4 K~ E (7.l1Oe+3, 6.13e+4) K~ C (2.38e±5, 1.90e+6) ,K e (9.04e±7, 1.13e+9)
Alg. A.2 K~ E (7.47e±1, 2.57e+2) r, E (5.47e+3, 1.83e±5) K E (5.46e+5, 1.83e+6)
Alg. A.3 K, C (3.38e+1, 1.10e+2) K~ c (3.38e±1, 1.10e+2) K~ E (3.38e+1, 1.10e±2)
Alg. A.l1 8 K E (7.53e+3, 1.85e+5) K, C (2.09e+5, 2.80e+6) K C- (1.24e+8, 2.02e±9)
Alg. A.2 K, E (3.02e+2, 1.05e+3) K, c (2.26e+4, 7.74e+4) K, E (2.26e+6, 7.73e+6)
Alg. A.3 K E (1.35e+2, 4.56e+2) r, C (1.35e+2, 4.56e+2) K E (1.35e+2, 4.56e+2)
Alg. A. 1 12 K C (9.07e+3, 3.93e+5) K C (2.l11e+5, 3.8 1e±6) K E (1.58e+8, 2.90e+9)
Alg. A.2 K E (6.8 1e+2, 2.3 5e±3) K C (5.12e±4, 1.76e+5) K E (5.11le+6, 1.76e+7)
Alg. A.3 K E (3.17e+2, 1.08e±3) r, C- (3.17e+2, 1.08e+3) K E (3.17e±2, 1.08e+3)

Table 9: Stokes Equations: Upper and Lower Bounds on K
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Colin, S. Etienne and D. Pelletier), Numerical Heat Transfer: Part B, Fundamentals,
Vol. 49, No. 2, pages 125-153 (2006).



44. Approximate Deconvolution Boundary Conditions for Large Eddy Simulation (with
T. Iliescu), Applied Math Letters, Vol. 19, pages 735-740 (2006).

45. An Improved Continuous Sensitivity Equation Method for Optimal Shape Design in
Mixed Convection (with R. Duvigneau and D. Pelletier), Numerical Heat Transfer:
Part B, Fundamentals, Vol. 50, No. 1, pages 1-24 (2006).

Presentations at meetings, conferences or seminars

During this project, we have given over 65 presentations at meetings, conferences or semi-
nars. Presentations given by the PI are listed below.

1. CFD2K, 8th Annual Conference of the CFD Society of Canada, Montr6al, Qu6bec
(June 2000).

2. 2000 American Control Conference, Chicago, IL (June 2000).

3. 3rd World Congress on Nonlinear Analysis, Catania, Italy (July 2000).

4. United Technologies Research Center, East Hartford, CT (July 2000).

5. AFOSR Workshop on Dynamics and Control, Pasadena, CA (August 2000).

6. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Op-
timization, Long Beach, CA (September 2000).

7. Boeing Seminar on Control and Design, Boeing Aerospace, Seattle, WA (September
2000).

8. United Technologies Research Center, Project Summary, East Hartford, CT (Decem-
ber 2000).

9. Sandia National Labs, CSRI Seminar Series, Livermore, CA (March 2001).

10. Virginia Tech, Aerospace and Ocean Engineering Seminar, Blacksburg, VA (April
2001).

11. 31st AIAA Fluid Dynamics Conference and Exhibit, Anaheim, CA (June 2001).

12. SIAM Control Conference, San Diego, CA (July 2001).

13. AFOSR Workshop on Dynamics and Control, Dayton, OH (July 2001).

14. Sensitivity Analysis Workshop 2001, Livermore, CA (August 2001).

15. Center for Turbomachinery and Compressor Design Annual Review, Blacksburg, VA
(September 2001).

16. University of Trier, Numerical Analysis Seminar, Trier, Germany (November 2001).

17. Iowa State University, Mathematics Colloquium, Ames, IA (March 2002).



18. 3rd AIAA Theoretical Fluids Meeting, 1 st AIAA Flow Control Meeting, St. Louis,
MO (June 2002). (1 hour invited lecture)

19. SIAM Annual Meeting, Philadelphia, PA (July 2002).

20. Fifteenth International Symposium on Mathematical Theory of Networks and Sys-
tems, South Bend, IN (August 2002).

21. AFOSR Workshop on Dynamics and Control, Pasadena, CA (August 2002).

22. 9th AIAA Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA
(September 2002).

23. 9th AIAA Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA
(September 2002).

24. Worcester Polytechnic Institute, Mechanical Engineering Colloquium, Worcester,
MA (September 2002).

25. 22nd Annual Southeastern-Atlantic Regional Conference on Differential Equations,
Knoxville, TN (October 2002).

26. IMA Workshop on Optimization in Simulation-Based Models, Minneapolis, MN,
(January 2003).

27. Virginia Tech, Mathematics Colloquium, Blacksburg, VA (January 2003).

28. Montana State University, Applied Mathematics Seminar, Bozeman, MT (February
2003).

29. SIAM Conference on Computational Science and Engineering, San Diego, CA (Febru-
ary 2003).

30. University of Louisville, Mathematics Colloquium, Louisville, KY (February 2003).

31. 27th Annual Conference of the South African Society for Numerical and Applied
Mathematics, Stellenbosch, South Africa (March 2003).

32. First Joint CAIMS/SIAM Annual Meeting, Montr6al, Qu6bec (June 2003).

33. SciCADE 2003, International Conference on Scientific Computation and Differential
Equations, Trondheim, Norway (June 2003).

34. 36th AIAA Thermophysics Conference, Orlando, FL (June 2003).

35. 7th US National Congress on Computational Mechanics, Albuquerque, NM (July
2003).

36. United States Air Force Academy, Seminar in Closed Loop Flow Control, Colorado
Springs, CO (July 2003).



37. Computation, Control and Biological Systems VIII, Bozeman, MT (July 2003).

38. Wright-Patterson Air Force Base, National Research Council Summer Faculty Sem-
inar, Wright-Patterson Air Force Base, OH (August 2003).

39. AFOSR Workshop on Dynamics and Control, Destin, FL (September 2003).

40. Ohio State University, Collaborative Center for Control Science, Columbus, OH
(September 2003).

41. AMS 2003 Fall Southeastern Sectional Meeting, Chapel Hill, NC (October 2003).

42. 23rd Annual Southeastern-Atlantic Regional Conference on Differential Equations,
Atlanta, GA (October 2003).

43. Florida State University, School of Computational Science and Information Technol-
ogy, Tallahassee, FL (November 2003).

44. George Mason University, Mathematics Colloquium, Alexandria, VA (November
2003).

45. SIAM Parallel Processing for Scientific Computing, San Francisco, CA (February
2004).

46. CSIT Workshop on Emerging Methods for Numerical Solution of PDEs, Tallahassee,
FL (March 2004).

47. University of Florida Graduate Education Research Center, Seminar, Destin, FL
(March 2004).

48. 2004 Advanced Simulation Technologies Conference, Alexandria, VA (April 2004).

49. Optimization Days, Montreal, Canada (May 2004).

50. IFIP Workshop on Shape Optimization and Control, Lisbon, Portugal (June 2004).

51. 2nd AIAA Flow Control Conference, Portland, OR (June 2004).

52. SIAM Annual Meeting, Portland, OR (July 2004).

53. 10th AIAA Symposium on Multidisciplinary Analysis and Optimization, Albany,
NY (September 2004).

54. Argonne National Laboratories, Wilkinson Visitor Program, Argonne, IL (October
2004).

55. AMS 2004 Fall Southeastern Sectional Meeting, Pittsburgh, PA (November 2004).

56. American Physical Society, 57th Annual Meeting of the Division of Fluid Dynamics,
Seattle, WA (November 2004).



57. IFIP Workshop on Free and Moving Boundaries, Analysis, Simulation and Control,
Houston, TX, (December 2004).

58. George Mason University, Fairfax, VA (February 2005).

59. International Conference on Approximation Methods for Design and Control, Buenos
Aires, Argentina (March 2005).

60. American Control Conference, Portland, OR (June 2005).

61. SIAM Annual Meeting, New Orleans, LA (July 2005).

62. MOPTA 05, Modeling and Optimization: Theory and Applications, Windsor, ON,
Canada, (July 2005). (1 hour invited lecture)

63. AFOSR Workshop on Computational Mathematics, Long Beach, CA (August 2005).

64. Workshop on Large-Scale Robust Optimization, Sante Fe, NM (September 2005).

65. Austrian Mathematical Society, Klagenfurt, Austria (September 2005).

Interactions and Transitions

AeroSoft, Blacksburg, VA (several meetings during the grant period)

Along with Andy Godfrey (AeroSoft) and Gene Cliff (Virginia Tech): Discussed strategies
to solve the problem of accurate sensitivity calculations for turbulent flows with geometric
parameters.

Along with Andy Godfrey (AeroSoft) and Gene Cliff, Uri Vandsburger (Virginia Tech):
Sensitivity analysis played an important role in a combustor design problem investigated as
part of an STTR at AeroSoft. Two issues that were raised were (i.) developing appropriate
boundary conditions specific to the sensitivity of injector locations and (ii.) demonstrating
sensitivity analysis for a nonlinear time-dependent problem.

[Contact: Andy Godfrey (540) 557-1907]

Air Force Research Laboratory, Wright-Patterson Air Force Base, OH

The PI spent the summer of 2003 as a research faculty fellow at the Air Vehicles Directorate
working with Siva Banda, Chris Camphouse and James Myatt. While at AFRL, the work
on Chandrasekhar integrator for fast functional gain calculations was carried out. This
approach resulted in up to an order of magnitude speedup in computational performance.
We also outlined several strategies for computing functional gains for Stokes equations.

Daniel Sutton, Masters student in Mechanical Engineering spent the summer at the Air Ve-
hicles Directorate working with Siva Banda, Chris Camphouse and James Myatt: Worked
on computing low-order models based on Proper Orthogonal Decomposition. He is look-
ing into POD for coupled systems. The PI and Lizette Zietsman made a two day visit to
the lab during Daniel's internship to discuss his research.

[Contacts: Chris Camphouse (937) 255-6326, James Myatt (937) 255-8498]



Air Force Research Laboratory, Eglin Air Force Base, FL

The PI and Ekkehard Sachs (Virginia Tech) met with Major Bill Hilbun (7 Dec. 2003, 11
March 2004) to discuss the modeling of plasma actuators.

Industrial Materials Institute, Boucherville, Quebec (June 13, 2000)

Met with Jean-Francois H~tu (IMI) and Dominique Pelletier (ltcole Polytechnique de Montreal):
The sensitivity of the location of mold filling lines is a direct application of the research
on sensitivity analysis with sliding boundary conditions. We jointly developed models for
sensitivity analysis for phase change problems arising in die casting and a contact resis-
tance model (to model the interface between the mold and the part). This research was
incorporated in the IMI mold-filling software simulator.

[Contact: Jean-Francois H~tu (450) 641-5000 x35082]
United Technologies Research Center, East Hartford, CT (September / December, 2000)

Met with Andy Godfrey (AeroSoft), Joel Wagner and Brent Staubach (Pratt and Whitney),
John Whiton (International Fuel Cell) and Mike Dorobantu, Bob LaBarre and David Sirag
(UTRC): Discussed two model problems to demonstrate the feasibility of using a sensitivity
solver as a post-processing module to either a commercial CFD solver such as Fluent or
existing in-house CFD solvers.

These problems stressed current capabilities of AeroSoft's SENSE package which does not
support sensitivity analysis for geometric variables in turbulent flows. Another limitation
is that some models used in Fluent are black-box and appropriate sensitivity equations for
these unknown models can't be developed without information about these models.

[Contact: Mike Dorobantu (860) 610-7824]

Honors/Awards

Air Force Presidential Early Career Award for Scientists and Engineers (April 2000).
National Research Council Summer Faculty Fellowship (May-August 2003).
Virginia Tech Mathematics Professor of the Year (2004).


